冯巩 1行霆燕 1王楠 1,*曾琦 1[ ... ]陈雪利 1,2,**
作者单位
摘要
1 西安电子科技大学生命科学技术学院西安市跨尺度生命信息智能感知与调控重点实验室,陕西 西安 710126
2 西安电子科技大学广州研究院先进医学影像与智慧医疗创新中心,广东 广州 510555
拉曼显微成像技术无需样本制备,具有无损、无创、对水溶液不敏感的优点,可在微米或纳米尺度下表征样本的生化组分及分布,成为生命科学领域重要的研究工具。随着对复杂生物样本研究的不断深入,拉曼显微成像也被期待能够实现对生物样本中的分子组成与分布的动态立体观测。首先,系统性地梳理近年来三维拉曼显微成像技术的研究进展,包括基于自发拉曼散射、相干拉曼散射、表面增强拉曼散射以及拉曼标签的不同三维成像方法的技术手段、改进策略与实验结果。然后,总结了不同成像技术在细胞生物学、发育生物学等方面的应用进展。最后展望了不同三维拉曼显微成像技术在生物医学光学显微成像技术应用中所面临的挑战和发展前景。
三维显微成像 拉曼显微成像 自发拉曼散射 相干拉曼散射 表面增强拉曼散射 拉曼标签 
激光与光电子学进展
2024, 61(6): 0618010
闫天宇 1,2何颖 1王鑫宇 1,2徐欣怡 1,2[ ... ]陈雪利 1,2
作者单位
摘要
1 西安电子科技大学 生命科学技术学院,陕西 西安 710126
2 西安电子科技大学 西安市跨尺度生命信息智能感知与调控重点实验室,陕西 西安 710126
荧光显微成像具有高分辨率、高灵敏度、高分子特异性以及非介入性的优点,可以在微米乃至纳米尺度下表征样本的形态学与分子功能学信息,成为了生命科学研究的重要工具。随着微观生物学研究的不断深入,荧光显微成像被期待能够动态且立体地观测微观生物结构与分子事件。文中系统性地梳理了近年来快速三维荧光显微成像技术的研究进展,包括点扫描式成像、宽场成像与投影断层成像在提高成像速度、拓展成像维度以及增强成像质量等方面的主要技术手段、改进策略与代表性研究成果,并展望了快速三维荧光显微成像技术的未来挑战与发展前景。
生物医学工程 荧光显微成像 体积成像 快速扫描 光学断层 宽场显微镜 biomedical engineering fluorescence microscopic imaging volumetric imaging fast scanning optical tomography wide-field microscopy 
红外与激光工程
2022, 51(11): 20220546
作者单位
摘要
作为一种典型的无衍射光束,贝塞尔光束具有无衍射和自重构特性,能够提供更长的聚焦长度和一定程度的抗散射能力,在生物医学光学显微成像技术领域获得了越来越多的应用。本文重点关注了贝塞尔光束在生物医学光学显微成像技术中的应用,包括利用其扩展景深能力实现体积样本快速三维成像、利用其抗散射粒子干扰能力实现散射样本的大深度成像以及利用更细聚焦光束能力实现更高分辨率的光学显微成像。首先,概述了贝塞尔光束及其实验室常用的产生方法;然后,总结了近些年贝塞尔光束在生物医学光学显微成像技术中的应用,包括但不限于多光子荧光显微成像、光片荧光显微成像、拉曼显微成像等,既总结了贝塞尔光束在其中发挥的优势,也分析了贝塞尔光束旁瓣带来的干扰问题的消除方案。最后分析和探讨了贝塞尔光束在生物医学光学显微成像技术应用中遇到的问题以及发展前景。
光子学报
2022, 51(8): 0851508
Author Affiliations
Abstract
1 Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
2 Engineering Research Center of Molecular & Neuro Imaging of the Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, P. R. China
3 Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, P. R. China
Coherent anti-Stokes Raman scattering (CARS) microscopy can resolve the chemical components and distribution of living biological systems in a label-free manner and is favored in several disciplines. Current CARS microscopes typically use bulky, high-performance solid-state lasers, which are expensive and sensitive to environmental changes. With their relatively low cost and environmental sensitivity, supercontinuum fiber (SF) lasers with a small footprint have found increasing use in biomedical applications. Upon these features, in this paper, we homebuilt a lowcost CARS microscope based on a SF laser module (scCARS microscope). This SF laser module is specially customized by adding a time-synchronized seed source channel to the SF laser to form a dual-channel output laser. The performance of the scCARS microscope is evaluated with dimethyl sulfoxide, whose results confirm a spatial resolution of better than 500 nm and a detection sensitivity of millimolar concentrations. The dual-color imaging capability is further demonstrated by imaging different species of mixed microspheres. We finally explore the potential of our scCARS microscope by mapping lipid droplets in different cancer cells and corneal stromal lenses.
Coherent anti-Stokes Raman scattering supercontinuum fiber laser lipid mapping cancer cell 
Journal of Innovative Optical Health Sciences
2022, 15(4): 2250024
作者单位
摘要
1 西安电子科技大学生命科学技术学院西安市跨尺度生命信息智能感知与调控重点实验室,陕西 西安 710126
2 西安电子科技大学电子工程学院,陕西 西安 710126
无透镜计算显微成像是一种低成本、高效的成像技术。这种成像方式具有大视野、高通量的特点,能够实时地对细胞进行无标记成像。提出了一种轻量化网络模型(Depthwise-ResNeXt),将该神经网络与无透镜计算显微成像进行有机结合,实现了实时准确的细胞分类。使用SUM、MCF10A、ECa109、CL-1四种细胞作为分类数据,Depthwise-ResNeXt对这四类细胞的分类准确率达到92.8%,参数量仅有806 kB。该网络证明了神经网络与无透镜计算显微成像在细胞分类领域相结合的可能性,并大大降低了神经网络在细胞分类方面的应用成本。
生物光学 数字全息 计算显微成像 无透镜成像技术 细胞分类 神经网络 轻量化网络 
中国激光
2022, 49(5): 0507204
Author Affiliations
Abstract
Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, P. R. China
Early diagnosis and fast detection with a high accuracy rate of lung cancer are important to improve the treatment effect. In this research, an early fast diagnosis and in vivo imaging method for lung adenocarcinoma are proposed by collecting the spectral data from normal and patients' cells/tissues, such as Fourier infrared spectroscopy (FTIR), UV-vis absorbance, and fluorescence spectra using anthocyanin. The FTIR spectra of human normal lung epithelial cells (BEAS-2B cells) and human lung adenocarcinoma cells (A549 cells) were collected. After the data is cleaned, a feature selection algorithm is used to select important wavelengths, and then, the classification models of support vector machine (SVM) and the grid search method are used to select the optimal model parameters (accuracy: 96.89% on the training set and 88.57% on the test set). The optimal model is used to classify all samples, and the accuracy is 94.37%. Moreover, the anthocyanin was prepared and used for the intracellular absorbance and fluorescence, and the optimized algorithm was used for classification (accuracy: 91.38% on the training set and 80.77% on the test set). Most importantly, the in vivo cancer imaging can be performed using anthocyanin. The results show that there are differences between lung adenocarcinoma and normal lung tissues at the molecular level, reflecting the accuracy, intuitiveness, and feasibility of this algorithm-assistant anthocyanin imaging in lung cancer diagnosis, thus showing the potential to become an accurate and effective technical means for basic research and clinical diagnosis.
Early diagnosis and bioimaging spectra machine learning. 
Journal of Innovative Optical Health Sciences
2022, 15(2): 2250011
作者单位
摘要
西安电子科技大学 生命科学技术学院,西安 710071
拉曼光谱技术以光子的非弹性散射为基础,具有实时、非侵入、快速等优点,作为一种分析工具被广泛应用于各个研究领域。在医学检验领域中,拉曼光谱不仅可以提供细胞和组织的化学成分信息,还能检测发生病变的细胞和组织在生化信息的组成和结构上的差异,在医学检验领域极具应用前景。概述了目前可能应用于医学检验的几种拉曼技术;阐述了拉曼光谱技术应用于生物液体样本和其他样本的一些关键问题。针对生物液体样本,重点评估了血液、尿液和脑脊液等流体样本的适用情况;总结了用于拉曼检测的医学样本的收集和保存方法。同时,介绍了拉曼光谱数据的处理与分析方法,通过光谱的预处理,结合统计学方法、机器学习方法进行特征提取与分类识别,实现拉曼光谱和生化信息的映射。对拉曼光谱应用于医学检验的关键问题进行讨论,探讨了临床转化需要克服的问题及发展前景。
拉曼光谱 表面增强拉曼散射 疾病诊断 生物液体 机器学习 Raman spectroscopy Surface enhanced Raman scattering Disease diagnosis Biological fluid Machine learning 
光子学报
2021, 50(10): 1017002
作者单位
摘要
西安电子科技大学 生命科学技术学院,西安 710071
将超连续谱光纤激光器引入到相干反斯托克斯拉曼散射成像系统,以解决当前相干反斯托克斯拉曼散射成像系统造价昂贵、体积庞大的问题。首先分析了基于超连续谱光源的相干反斯托克斯拉曼散射成像理论及其影响因素;接着搭建了一套基于超连续谱光源的相干反斯托克斯拉曼散射成像系统,并进行了成像性能测试。在物镜、功率、浓度等不同影响因素的情况下,系统测试的实验结果与数值仿真结果具有高度一致性,验证了基于超连续谱光源的相干反斯托克斯拉曼散射成像理论与实验的可行性。
非线性光学 无标记显微成像 拉曼散射成像 相干反斯托克斯拉曼散射 显微成像 超连续谱光纤激光器 Nonlinear optics Label-free microscopic imaging Raman Scattering imaging Coherent anti-Stokes Raman scattering Microscopy Supercontinuum fiber laser 
光子学报
2021, 50(10): 1011003
Xinyu Wang 1,2Lin Wang 3Peng Lin 4Hui Xie 1,2[ ... ]Xueli Chen 1,2,*
Author Affiliations
Abstract
1 School of Life Science and Technology Xidian University, Xi'an, Shaanxi 710126, P. R. China
2 Engineering Research Center of Molecular & Neuro Imaging of the Ministry of Education Xi'an, Shaanxi 710126, P. R. China
3 School of Computer Science and Engineering Xi'an University of Technology Xi'an, Shaanxi 710048 P. R. China
4 Department of Electrical & Computer Engineering Boston University, Boston Massachusetts 02215, USA
Stimulated Raman scattering (SRS) microscopy has the ability of noninvasive imaging of specific chemical bonds and been increasingly used in biomedicine in recent years. Two pulsed Gaussian beams are used in traditional SRS microscopes, providing with high lateral and axial spatial resolution. Because of the tight focus of the Gaussian beam, such an SRS microscopy is difficult to be used for imaging deep targets in scattering tissues. The SRS microscopy based on Bessel beams can solve the imaging problem to a certain extent. Here, we establish a theoretical model to calculate the SRS signal excited by two Bessel beams by integrating the SRS signal generation theory with the fractal propagation method. The fractal model of refractive index turbulence is employed to generate the scattering tissues where the light transport is modeled by the beam propagation method. We model the scattering tissues containing chemicals, calculate the SRS signals stimulated by two Bessel beams, discuss the influence of the fractal model parameters on signal generation, and compare them with those generated by the Gaussian beams. The results show that, even though the modeling parameters have great influence on SRS signal generation, the Bessel beams-based SRS can generate signals in deeper scattering tissues.
Stimulated Raman scattering Bessel beam scattering tissues fractal model. 
Journal of Innovative Optical Health Sciences
2021, 14(3): 2150008
Xueli Chen 1,2,*†Xinyu Wang 1,2†Lin Wang 3†Peng Lin 4[ ... ]Ji-Xin Cheng 4
Author Affiliations
Abstract
1 Engineering Research Center of Molecular & Neuro Imaging, Ministry of Education, Xi’an 710126, China
2 School of Life Science and Technology, Xidian University, Xi’an 710126, China
3 School of Information Sciences and Technology, Northwest University, Xi’an 710127, China
4 Department of Electrical and Computer Engineering & Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
Scattering is a huge challenge for microscopic imaging. Indeed, it is difficult to observe target chemicals in scattering media by means of the current Gaussian beam-based stimulated Raman scattering (SRS) microscopy, since the tight focus of the Gaussian beam is destroyed after propagating through a certain distance. Bessel beams, featuring self-reconstructing property, may bring a solution to this problem. By combining Bessel beams with SRS microscopy, we can probe the SRS signal from a scattering medium. In this paper, using the beam propagation method, we first simulate the propagation of the Bessel beam as well as the generation and self-reconstruction of SRS signals. By adding glass beads along the beam propagation path in order to simulate scattering, the propagation of the Bessel beams and the generation of the SRS signals will change. Then, we design a series of simulations to investigate the influence of the size, position, number, and distribution of the added glass beads on the generation of the SRS signals. A preliminary experiment is also carried out to confirm the simulation predictions. Results demonstrate that the SRS signals can be generated or be recovered at a certain depth in scattering media, and that such signals are greatly affected by the parameters of the scatters.
Photonics Research
2020, 8(6): 06000929

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!